Ground-state statistics from annealing algorithms: Quantum vs classical approaches
نویسندگان
چکیده
We study the performance of quantum annealing for systems with ground-state degeneracy by directly solving the Schrödinger equation for small systems and quantum Monte Carlo simulations for larger systems. The results indicate that naive quantum annealing using a transverse field may not be well suited to identify all degenerate ground-state configurations, although the value of the ground-state energy is often efficiently estimated. An introduction of quantum transitions to all states with equal weights is shown to greatly improve the situation but with a sacrifice in the annealing time. We also clarify the relation between the spin configurations in the degenerate ground states and the probabilities that those states are obtained by quantum annealing. The strengths and weaknesses of quantum annealing for problems with degenerate ground states are discussed in comparison with classical simulated annealing. PACS numbers: 87.55.kd, 87.15.ag, 87.15.ak, 75.50.Lk Ground-state statistics from annealing algorithms 2
منابع مشابه
Quantum Walks and Ground State Problems
OF THE DISSERTATION Quantum walks and ground state problems by Peter Courtland Richter Dissertation Director: Mario Szegedy Since the appearance of Shor’s factoring algorithm in 1994, the search for novel quantum computer algorithms has proved surprisingly difficult. Two design approaches that have yielded some progress are quantum walks and adiabatic computing. The former has been shown to spe...
متن کاملFast quantum methods for optimization
Discrete combinatorial optimization consists in finding the optimal configuration that minimizes a given discrete objective function. An interpretation of such a function as the energy of a classical system allows us to reduce the optimization problem into the preparation of a low-temperature thermal state of the system. Motivated by the quantum annealing method, we present three strategies to ...
متن کاملEvidence for quantum annealing with more than one hundred qubits
Quantum technology is maturing to the point where quantum devices, such as quantum communication systems, quantum random number generators and quantum simulators may be built with capabilities exceeding classical computers. A quantum annealer, in particular, solves optimization problems by evolving a known initial configuration at non-zero temperature towards the ground state of a Hamiltonian e...
متن کاملOn complexity of the quantum Ising model
We study the computational complexity of estimating the ground state energy and simulating the adiabatic evolution for the transverse field Ising model (TIM). It is shown that the ground state energy problem for TIM on a degree-3 graph is complete for the complexity class StoqMA. This is an extension of the classical class MA where the verifier can accept quantum states as a proof and apply cla...
متن کاملQuantum annealing for problems with ground-state degeneracy
We study the performance of quantum annealing for systems with ground-state degeneracy by directly solving the Schrödinger equation for small systems and quantum Monte Carlo simulations for larger systems. The results indicate that quantum annealing may not be well suited to identify all degenerate ground-state configurations, although the value of the ground-state energy is often efficiently e...
متن کامل